• Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

      Williams, H J; Norton, N; Dwyer, S; Moskvina, V; Nikolov, I; Carroll, L; Georgieva, L; Williams, N M; Morris, D W; Quinn, E M; et al. (2011-04)
      A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.
    • GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia.

      Chen, X; Lee, G; Maher, B S; Fanous, A H; Chen, J; Zhao, Z; Guo, A; van den Oord, E; Sullivan, P F; Shi, J; et al. (2011-11)
      We conducted data-mining analyses using the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) and molecular genetics of schizophrenia genome-wide association study supported by the genetic association information network (MGS-GAIN) schizophrenia data sets and performed bioinformatic prioritization for all the markers with P-values ≤0.05 in both data sets. In this process, we found that in the CMYA5 gene, there were two non-synonymous markers, rs3828611 and rs10043986, showing nominal significance in both the CATIE and MGS-GAIN samples. In a combined analysis of both the CATIE and MGS-GAIN samples, rs4704591 was identified as the most significant marker in the gene. Linkage disequilibrium analyses indicated that these markers were in low LD (3 828 611-rs10043986, r(2)=0.008; rs10043986-rs4704591, r(2)=0.204). In addition, CMYA5 was reported to be physically interacting with the DTNBP1 gene, a promising candidate for schizophrenia, suggesting that CMYA5 may be involved in the same biological pathway and process. On the basis of this information, we performed replication studies for these three single-nucleotide polymorphisms. The rs3828611 was found to have conflicting results in our Irish samples and was dropped out without further investigation. The other two markers were verified in 23 other independent data sets. In a meta-analysis of all 23 replication samples (family samples, 912 families with 4160 subjects; case-control samples, 11 380 cases and 15 021 controls), we found that both markers are significantly associated with schizophrenia (rs10043986, odds ratio (OR)=1.11, 95% confidence interval (CI)=1.04-1.18, P=8.2 × 10(-4) and rs4704591, OR=1.07, 95% CI=1.03-1.11, P=3.0 × 10(-4)). The results were also significant for the 22 Caucasian replication samples (rs10043986, OR=1.11, 95% CI=1.03-1.17, P=0.0026 and rs4704591, OR=1.07, 95% CI=1.02-1.11, P=0.0015). Furthermore, haplotype conditioned analyses indicated that the association signals observed at these two markers are independent. On the basis of these results, we concluded that CMYA5 is associated with schizophrenia and further investigation of the gene is warranted.
    • Neuropsychological effects of the CSMD1 genome-wide associated schizophrenia risk variant rs10503253.

      Donohoe, G; Walters, J; Hargreaves, A; Rose, E J; Morris, D W; Fahey, C; Bellini, S; Cummins, E; Giegling, I; Hartmann, A M; et al. (2013-03)
      The single-nucleotide polymorphism (SNP) rs10503253, located within the CUB and Sushi multiple domains-1 (CSMD1) gene on 8p23.2, was recently identified as genome-wide significant for schizophrenia (SZ), but is of unknown function. We investigated the neurocognitive effects of this CSMD1 variant in vivo in patients and healthy participants using behavioral and imaging measures of brain structure and function. We compared carriers and non-carriers of the risk 'A' allele on measures of neuropsychological performance typically impaired in SZ (general cognitive ability, episodic and working memory and attentional control) in independent samples of Irish patients (n = 387) and controls (n = 171) and German patients (205) and controls (n = 533). Across these groups, the risk 'A' allele at CSMD1 was associated with deleterious effects across a number of neurocognitive phenotypes. Specifically, the risk allele was associated with poorer performance on neuropsychological measures of general cognitive ability and memory function but not attentional control. These effects, while significant, were subtle, and varied between samples. Consistent with previous evidence suggesting that CSMD1 may be involved in brain mechanisms related to memory and learning, these data appear to reflect the deleterious effects of the identified 'A' risk allele on neurocognitive function, possibly as part of the mechanism by which CSMD1 is associated with SZ risk.