Show simple item record

dc.contributor.authorFlynn, Aidan
dc.contributor.authorChen, Xizhe
dc.contributor.authorO'Connell, Enda
dc.contributor.authorO'Brien, Timothy
dc.date.accessioned2012-10-30T11:38:31Z
dc.date.available2012-10-30T11:38:31Z
dc.date.issued2012-09-13
dc.identifier.citationStem Cell Research & Therapy. 2012 Sep 13;3(5):36
dc.identifier.urihttp://dx.doi.org/10.1186/scrt127
dc.identifier.urihttp://hdl.handle.net/10147/250556
dc.description.abstractAbstract Introduction A number of questions remain unanswered in the field of cell therapy for acute myocardial infarction, including what is the optimal cell type, and can therapeutic efficacy be enhanced by conditioning regimens. In this study, we sought to address these questions by directly comparing the effect of bone marrow-derived mesenchymal stem cells and unrestricted somatic stem cells delivered 24 hours post-myocardial infarction and by determining if the therapeutic efficacy of unrestricted somatic stem cells could be enhanced by exposing the cells to guiding factors before cell transplantation. Methods Unrestricted somatic stem cells were guided by exposure to 50 ng/mL basic fibroblast growth factor, 20 ng/mL hepatocyte growth factor and 20 ng/mL bone morphogenetic protein-2 for 24 hours. Using a Sprague-Dawley rat model of acute myocardial infarction, we transplanted cells by intramyocardial injection 24 hours post-myocardial infarction. Cardiac function was serially measured using echocardiography, and histological analyses of infarct morphology, angiogenesis and apoptosis were obtained. Transcriptomic and proteomic changes were assessed using microarray and real-time quantitative PCR. Results When assessed 28 days after the myocardial infarction, the delivery of mesenchymal stem cells 24 hours post-myocardial infarction did not improve ejection fraction (P = 0.19), and did not prevent the decline in ejection fraction observed in the absence of cell therapy (P = 0.17). The administration of unrestricted somatic stem cells also did not improve ejection fraction (P = 0.11), but did prevent a further decline in ejection fraction (P = 0.001). Delivery of guided unrestricted somatic stem cells significantly improved ejection fraction (P = 0.03). Guided unrestricted somatic stem cells restored function to a greater extent than mesenchymal stem cells (P = 0.03). The infarct area (P = 0.2), apoptosis (P = 0.07) and angiogenesis (P = 0.09) did not differ between groups. Microarray analysis revealed that, following pre-implantation guiding, the gene groupings of mitosis, signalling and angiogenesis were highly overrepresented, mediators of apoptosis were overrepresented, and cardiomyocyte-associated genes were not differentially expressed. Conclusions These results suggest that guided unrestricted somatic stem cells have a moderate capacity to repair cardiac damage and that they are more effective than mesenchymal stem cells in restoring cardiac function after a myocardial infarction. The mechanism of the benefit was not fully elucidated in this study, but these observations may be mediated by favorable dysregulation of angiogenic and apoptotic gene groupings.
dc.titleA comparison of the efficacy of transplantation of bone marrow derived mesenchymal stem cells and unrestricted somatic stem cells on outcome after acute myocardial infarction
dc.typeJournal Article
dc.language.rfc3066en
dc.rights.holderAidan Flynn et al.; licensee BioMed Central Ltd.
dc.description.statusPeer Reviewed
dc.date.updated2012-10-28T16:07:22Z
refterms.dateFOA2018-08-23T00:57:11Z
html.description.abstractAbstract Introduction A number of questions remain unanswered in the field of cell therapy for acute myocardial infarction, including what is the optimal cell type, and can therapeutic efficacy be enhanced by conditioning regimens. In this study, we sought to address these questions by directly comparing the effect of bone marrow-derived mesenchymal stem cells and unrestricted somatic stem cells delivered 24 hours post-myocardial infarction and by determining if the therapeutic efficacy of unrestricted somatic stem cells could be enhanced by exposing the cells to guiding factors before cell transplantation. Methods Unrestricted somatic stem cells were guided by exposure to 50 ng/mL basic fibroblast growth factor, 20 ng/mL hepatocyte growth factor and 20 ng/mL bone morphogenetic protein-2 for 24 hours. Using a Sprague-Dawley rat model of acute myocardial infarction, we transplanted cells by intramyocardial injection 24 hours post-myocardial infarction. Cardiac function was serially measured using echocardiography, and histological analyses of infarct morphology, angiogenesis and apoptosis were obtained. Transcriptomic and proteomic changes were assessed using microarray and real-time quantitative PCR. Results When assessed 28 days after the myocardial infarction, the delivery of mesenchymal stem cells 24 hours post-myocardial infarction did not improve ejection fraction (P = 0.19), and did not prevent the decline in ejection fraction observed in the absence of cell therapy (P = 0.17). The administration of unrestricted somatic stem cells also did not improve ejection fraction (P = 0.11), but did prevent a further decline in ejection fraction (P = 0.001). Delivery of guided unrestricted somatic stem cells significantly improved ejection fraction (P = 0.03). Guided unrestricted somatic stem cells restored function to a greater extent than mesenchymal stem cells (P = 0.03). The infarct area (P = 0.2), apoptosis (P = 0.07) and angiogenesis (P = 0.09) did not differ between groups. Microarray analysis revealed that, following pre-implantation guiding, the gene groupings of mitosis, signalling and angiogenesis were highly overrepresented, mediators of apoptosis were overrepresented, and cardiomyocyte-associated genes were not differentially expressed. Conclusions These results suggest that guided unrestricted somatic stem cells have a moderate capacity to repair cardiac damage and that they are more effective than mesenchymal stem cells in restoring cardiac function after a myocardial infarction. The mechanism of the benefit was not fully elucidated in this study, but these observations may be mediated by favorable dysregulation of angiogenic and apoptotic gene groupings.


Files in this item

Thumbnail
Name:
scrt127.xml
Size:
77.77Kb
Format:
XML
Thumbnail
Name:
scrt127.pdf
Size:
531.1Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record