• Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways

      Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula (2014-01-20)
      Abstract Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus into a transcriptional response. Conclusions This work identifies key developmental regulatory genes impacted by altered mechanical stimulation, sheds light on the molecular mechanisms that interpret mechanical stimulation during skeletal development and provides valuable resources for further investigation of the mechanistic basis of mechanoregulation. In particular it highlights the Wnt signalling pathway as a potential point of integration of mechanical and molecular signalling and cytoskeletal components as mediators of the response.
    • What is the optimal time point to assess patient-reported recovery after hip and knee replacement? a systematic review and analysis of routinely reported outcome data from the English patient-reported outcome measures programme

      Browne, John P; Bastaki, Hamad; Dawson, Jill (BioMed Central, 2013-07-30)
      Abstract Background It is unclear if there is a clinically important improvement in the six to 12-month recovery period after hip and knee replacement. This is an obvious gap in the evidence required by patients undergoing these procedures. It is also an issue for the English PROMs (Patient-Reported Outcome Measures) Programme which uses 6-month outcome data to compare the results of hospitals that perform hip and knee replacements. Methods A systematic review of studies reporting the Oxford Hip Score (OHS) or Oxford Knee Score (OKS) at 12 months after surgery was performed. This was compared with six-month outcome data collected for 60, 160 patients within the English PROMs programme. A minimally important difference of one standard error of the measurement, equivalent to 2.7 for the OHS and 2.1 for the OKS, was adopted. Results and discussion Six studies reported OHS data for 10 different groups containing 8,308 patients in total. In eight groups the change scores reported were at least 2.7 points higher than the six-month change observed in the PROMs programme (20.2 points). Nine studies reported OKS data for 13 different groups containing 4,369 patients in total. In eight groups the change scores reported were at least 2.1 points higher than the six-month change observed in the PROMs programme (15.0 points). Conclusions There is some evidence from this systematic review that clinically important improvement in the Oxford hip and knee scores occurs in the six to 12 month recovery period. This trend is more apparent for hip than knee replacement. Therefore we recommend that the English Department of Health study the impact on hospital comparisons of using 12- rather than six-month outcome data.
    • Whole body oxygen uptake and evoked knee torque in response to low frequency electrical stimulation of the quadriceps muscles: V ¿ O 2 frequency response to NMES

      Minogue, Conor M; Caulfield, Brian M; Lowery, Madeleine M (2013-06-28)
      Abstract Background There is emerging evidence that isometric Neuromuscular Electrical Stimulation (NMES) may offer a way to elicit therapeutically significant increases in whole-body oxygen uptake in order to deliver aerobic exercise to patients unable to exercise volitionally, with consequent gains in cardiovascular health. The optimal stimulation frequency to elicit a significant and sustained pulmonary oxygen uptake has not been determined. The aim of this study was to examine the frequency response of the oxygen uptake and evoked torque due to NMES of the quadriceps muscles across a range of low frequencies spanning the twitch to tetanus transition. Methods Ten healthy male subjects underwent bilateral NMES of the quadriceps muscles comprising eight 4 minute bouts of intermittent stimulation at selected frequencies in the range 1 to 12 Hz, interspersed with 4 minutes rest periods. Respiratory gases and knee extensor torque were simultaneously monitored throughout. Multiple linear regression was used to fit the resulting data to an energetic model which expressed the energy rate in terms of the pulse frequency, the torque time integral and a factor representing the accumulated force developed per unit time. Results Additional oxygen uptake increased over the frequency range to a maximum of 564 (SD 114) ml min-1 at 12 Hz, and the respiratory exchange ratio was close to unity from 4 to 12 Hz. While the highest induced torque occurred at 12 Hz, the peak of the force development factor occurred at 6 Hz. The regression model accounted for 88% of the variability in the observed energetic response. Conclusions Taking into account the requirement to avoid prolonged tetanic contractions and to minimize evoked torque, the results suggest that the ideal frequency for sustainable aerobic exercise is 4 to 5 Hz, which coincided in this study with the frequency above which significant twitch force summation occurred.